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Abstract 
This paper is the design of an induction motor drive system that can be controlled using direct power 

control. First the possibilities of direct power control (DPC) of induction motors (IMs) fed by a voltage source 
inverter have been studied. Principles of this method have been separately evaluated. Also the drive system 
is more versatile due to its small size and low cost. Therefore it is advantageous to use the system where the 
speed is estimated by means of a control algorithm instead of measuring. This paper proposed one novel 
induction motor speed control system with fuzzy logic. The estimator was designed and simulated in 
Matlab/Simulink. Simulation result shows a good performance of speed estimator. 
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1. Introduction 

The electric drive system is a vital part to drive any motor. The electric drive system is 
used to control the position, speed and torque of the electric motors. Many works has been 
done on power converter topologies, control scheme of the electric drive systems and on the 
motor types in order to enhance and improve the performance of the electric motors so as to 
exactly perform and do what is required [1]. Induction Motors (IMs) are widely used in industrial, 
commercial and domestic applications as they are simple, rugged, low cost and easy to 
maintain. Since IMs demands well control performances: precise and quick torque and flux 
response, large torque at low speed, wide speed range, the drive control system is necessary 
for IMs [2]. 

Control of the Induction motors can be done using various techniques. Most common 
techniques are: (a) constant voltage/frequency control (V/F), (b) field orientation control (FOC), 
and (c) direct torque control (DTC). The first one is considered as scalar control since it adjusts 
only magnitude and frequency of the voltage or current with no concern about the instantaneous 
values of motor quantities. It does not require knowledge of parameters of the motor, and it is an 
open-loop control. Thus, it is a low cost simple solution for low-performance applications such 
as fans and pumps. The other two methods are in the space vector control category because 
they utilize both magnitude and angular position of space vectors of motor variables, such as 
the voltage and flux. They are employed in high performance applications, such as positioning 
drives or electric vehicles [3, 4]. 

Direct power control is a control method that directly selects output voltage vector states 
based on the power and flux errors using hysteresis controllers and without using current loops. 
In this respect, it is similar to the well know direct torque control (DTC) method described in the 
literatures for various AC motors [5]. 

What is in common among these applications is that they all are power output devices 
needed to provide real power to the load. DPC technique basically is applied to generators, but 
it has been tried to employ it to control of electrical motors instead of DTC technique, due to 
problems of torque estimation and dependency to the motor’s parameters in DTC. Therefore, 
DPC technique enjoys all advantages of DTC such as fast dynamic and ease of implementation, 
without having the DTC’s problems. However, publications about direct power control are mainly 
aimed at either rectifiers [6], converters [7, 8], dual-fed induction generators (DFIG) [9, 10] or 
permanent magnet synchronous generators (PMSG) [11, 12], and there isn’t any research 
about using the DPC technique for Induction motor. 
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The research of induction motor speed has been an important field of research of drive 
system. The main reasons for the development of drives are: reduction of complex hardware 
and hence cost; increase in mechanical robustness and hence overall ruggedness; working 
under hostile environment; higher reliability; reduced maintain etc. Techniques range open loop, 
low performance strategy to closed loop, high performance over the past decades [13-17]. 

Since last decade, fuzzy logic control has gained significant attention in the field of 
control system applications but has not been applied much for the speed estimation solutions 
[18-22]. 

In this paper, to reduce the torque ripples of the induction motor on the DPC method, a 
new approach has been proposed which named as, fuzzy logic based space vector modulation 
method. The fuzzy logic controller, in this proposed method, rates of flux and power errors as 
input and describes optimum space vector as output to minimize flux and power errors.  
 
 
2. Direct Power and Flux Control of Induction Motors 

The direct power control methods discussed in this paper bear certain similarity to the 
direct torque control (DTC). Therefore, DPC is actually direct power and flux control, with two 
parameters involved in the control strategy, so it is also named as direct power and flux control 
(DPFC) in some publications [24]. 

Direct power and flux control (DPFC) of IMs is a control method that directly selects 
output voltage vector states based on the power and flux errors using hysteresis controllers. 
Figure 1 shows the block diagram of a general open-loop DPFC system. 

 
 

 
 

Figure 1. Block diagram of direct power and flux control system 
 
 

2.1. Flux Control Principles 
Flux linkage is very important in IMs. Constant flux can provide enough electromagnetic 

torque and avoid magnetizing current saturation in the iron core of the IM. Therefore in direct 
torque and flux control, as well as in the proposed direct power and flux controls in the 
subsequent chapters, the flux is maintained constant [25]. 

In the stator stationary reference frame, the frame rotation speed is zero and the rotor 
voltage is zero as well (for squirrel-cage IMs), thus: 
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If we neglect the small voltage drop across the stator resistance, we have 
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Integrating (3) and writing it in a discrete form, we obtain 
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That is, 
 

  ⃗    ⃗⃗     (5) 

 
Where            equals the switching interval. 

Therefore, within a switching interval t, the increase of stator flux is proportional to the 
stator voltage space vector. This is the principle of direct flux control in DPC. 
 
2.2. Power Control Principles 

From the power flow charts in induction motor, it is evident that real output power is the 
part that produces the torque, and is what the user of the system is mostly interested in. 
The output real power is given by 
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Substituting the torque in (17) with (18), the output power becomes 
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(8) 

 
Since the magnitude of the stator flux is kept constant and the rotor flux does not 

change much due to its inertia, the rotor speed and angle can be considered constant too. The 
formula above shows that the change of output power depends only on the change of stator flux 
angle. The stator voltage vector that can increase the stator angle needs to be raised in order to 
increase the output power. 

The real output power equation obtained above is only valid for explanation of the 
principles of power control. However, it is not appropriate for the purpose of estimating the 
actual power in simulations. 
 
2.3. Output Power Reference 

The output power reference is the command value, or set point, for the power control. In 
a closed-loop speed control system, the reference of the power controller is obtained from the 
output of the PI-type speed controller (see Figure 2). The speed error is defined as the 
difference of the reference speed and the estimated actual speed 
 

      
     (9) 

 
Where   

  is the reference speed (the asterisk denotes a reference value). Then, the reference 
torque can be obtained through a conventional PI controller as 
 

  
    (   )    ∫(   )   (10) 
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The continuous standard form above can also be expressed in a discrete incremental PI 
control form, which is more suitable for the digital implementation. 

 
  
 (    )    

 (  )    [   (  )     (    )]         (  ) (11) 

 
The subscript (n) denotes the current sampling instant, (n-1) is the last instant, and (n+1) is the 
next one. The proportional gain is denoted by    ,    is the integral gain, which Equals    

divided by the integral time constant    , and    is the sampling time interval between the n and 
(n+1) sampling instants. The output power reference according to (17) is therefore expressed as   
the process of obtaining the output power reference from the speed reference is illustrated in 
Figure 3. 
For simulations, the actual motor speed    can be obtained as 
 

   
 

 
∫(      )   (12) 

 
In practice the speed is either measured directly or estimated from the current and voltage 
signals. The magnitude of the stator flux is kept constant in the simulation, thus the flux 
reference   

  is a constant. The error of the stator flux is 
 

      
     (13) 

 
 

 
 

Figure 2. Diagram of output power reference obtained from speed loop 
 
 

2.4. Power and Flux Hysteresis Controllers 
Both the output power and the stator flux controllers are of hysteresis type. Depending 

on the control error, the output of the controller is set to two or three discrete values. The power 
controller has a three level output [26-27]. The values are 1, 0 and -1, representing an increase, 
no change, and a decrease of the controlled variable, respectively. The number of flux controller 
output levels is two, with 1 and 0 meaning an increase and decrease commands, respectively. 
Figure 3 illustrates characteristics of these two controllers. 

 
 

 
 

Figure 3. Characteristics of the hysteresis controllers: (a) power controller, (b) flux controller 
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2.5. Switching Table 
The task of the state selector in the direct power control is to combine the outputs of the 

power controller and flux controller to select the values of the switching variables a, b, and c. 
These variables describe the required voltage vectors of the inverter. 

To make it easier to implement, the combination of the two controller outputs can be 
expressed as follows: 

 
           (14) 

 
In the above equation, the variable b = 1, 2, 3, 4, 5, 6, while   = (0, 1) and   = (-1, 0, 1). 

Alternatively, (25) can also be represented by Table 1. 
 
 

Table 1. Combination of the power and flux controller outputs 
                

3 2 1 
6 5 4 

 
 
A whole stator flux cycle of 360º is divided equally into 6 sectors, each one spanning 60º. 
Combining with the sector numbers from 1 through 6, produces the lookup Table 2 for the state 
selection. The concept of state selection is illustrated in Figure 4. 
 

 
Table 2. State selection loop-up table 

 b=1 b=2 b=3 b=4 b=5 b=6 

Sector 1 1 0 2 5 7 6 
Sector 2 5 7 6 4 0 2 
Sector 3 4 0 1 6 7 3 
Sector 4 6 7 5 2 0 1 
Sector 5 2 0 4 3 7 5 
Sector 6 3 7 6 1 0 4 

 
 
 

 
 

Figure 4. Block diagram of the inverter state selection 
 
 

Note that the stator flux angle    must be converted to a sector number of 1 through 6 
for the use of Table 2 for state selection. 
 
2.6. Estimation of Stator Flux and Output Power 

The estimation of flux is implemented by integration of (1): 
 

 ⃗   ∫( ⃗        )   (15) 

 
These estimated values are the feedbacks for the output power and stator flux controls 

shown in Figure 5. 
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Figure 5. Estimation of actual output power and stator flux linkage 
 
 
3. Fuzzy Logic Control 
3.1. Fuzzy Control 

The design of a Fuzzy Logic Controller requires the choice of Membership Functions. 
The membership functions should be chosen such that they cover the whole universe of 
discourse. It should be taken care that the membership functions overlap each other. This is 
done in order to avoid any kind of discontinuity with respect to the minor changes in the inputs. 
To achieve finer control, the membership functions near the zero regions should be made 
narrow. Wider membership functions away from the zero region provides faster response to the 
system. Hence, the membership functions should be adjusted accordingly. After the appropriate 
membership functions are chosen, a rule base should be created. It consists of a number of 
Fuzzy If-Then rules that completely define the behaviour of the system. These rules very much 
resemble the human thought process, thereby providing artificial intelligence to the system [28]. 

The general fuzzy control structure includes three parts: (1) Fuzzification. The 
fuzzification process normalizes the input variables and expresses the inputs as suitable 
linguistic fuzzy sets. (2) Evaluation of control rules. The fuzzy logic is utilized to map the input 
set to an output set. The rules are stored as one lookup table. (3) Defuzzification. The fuzzy 
outputs are converted to crisp outputs. The conventional fuzzy system structure is displayed  
in Figure 6. 
 
 

 
 

Figure 6. Fuzzy logic control structure 
 
 

After SOM network, the input parameters have been mapped as 5×5 sets, so it is no 
need of the fuzzification, and the next step is to apply the fuzzy logic to each input sets. 
Designers should manually analysis each set and estimate the corresponding motor running 
status, such as the motor startup or overshoot, light or heavy load, and the control rule table 
should be listed in according with these statuses. For example, if the average speed error of 
one cluster is 0.15pu, and the average change of speed error is 0.1pu/s, so this means that the 
motor is in accelerating status, the regulation factor should be greater. Each cluster of the SOM 
output sets should be analyzed like this step and marked as logic variables Z, PVS, PS, PM, 
PB, NVS, NS, NM, NB to represent the control factor types. 

Fuzzy 

Logic 

control 

 
Fuzzification 

 
Defuzzification 

 
Rules Lookup Table 
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The defuzzification maps the fuzzy system output logic variables to control factors, and 
the factors could be utilized to adjust the speed estimation and regulation factors. The figure of 
the membership function that reflects the logic sets and the control factors is depicted  
in Figure 7. 
 
 

 
 

Figure 7. Membership function of the defuzzification 
 
 
3.2. Induction Motor Fuzzy Logic Control 

The direct power control structure is displayed in Figure 8. The fuzzy logic controller 
generates the output logic through the lookup rule table, and determines the final output 
according to the membership function as depicted in Figure 7. The fuzzy control system output 
factors should be employed to adjust the close loop controller, such as the current controller and 
the parameters convergence of the observer adaptive process. 
 
 

Table 3. Fuzzy Logic Rule 
X Y 

1 2 3 4 5 

1 NB NM NS NVS Z 
2 NM NS NVS Z PVS 
3 NS NVS Z PVS PS 
4 NVS Z PVS PS PM 
5 Z PVS PS PM PB 

 
 

 
 

Figure 8. Schematic Direct Power Control of Induction Motor Drive using Fuzzy Logic 
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4. Simulation Results 
The proposed method is simulated by Matlab/Simulation platform. The control system is 

shown in Figure 8. Figure 9 shows stator and rotor flux trajectory using Fuzzy controller and 
Figure 10 shows stator current using Fuzzy controller. Speed-torque curve is shown in Figure 
11. Figure 12 and 13 show power tracking and speed tracking using DPC strategy with Fuzzy 
controller, respectively. These results show that the designed estimator properly worked in 
Matlab/Simulink. Simulation results also shows that the proposed method has a good 
performance of speed estimator. 
 
 

 
 

Figure 9. Stator and Rotor flux trajectory using DPC Strategy with Fuzzy controller 
 
 

 
 

Figure 10. Stator current using DPC Strategy with Fuzzy controller 
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Figure 11. Speed-torque curve using DPC Strategy with Fuzzy controller 
 
 

 
 

Figure 12. Power Tracking using DPC Strategy with Fuzzy controller 
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Figure 13. Speed Tracking using DPC Strategy with Fuzzy controller 
 
 

5. Conclusion 
The direct power control of induction motor with fuzzy logic controller is investigated in 

this paper. A novel speed drive for induction motor of moderate performance and low 
computational effort has been designed and described. An important contribution of the work is 
the design of a fuzzy system. The simulation shows that the fuzzy logic speed can identify and 
track the motor speed accurately during the whole operating region. 
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